If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2-30z+20=0
a = 2; b = -30; c = +20;
Δ = b2-4ac
Δ = -302-4·2·20
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{185}}{2*2}=\frac{30-2\sqrt{185}}{4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{185}}{2*2}=\frac{30+2\sqrt{185}}{4} $
| -12-9+24x+4=43 | | 5(g+8)-5=103 | | -0.2t^2+2.4t-6=0 | | s−60/7=5 | | u8=9 | | 35=s/3+25 | | 16-4/6=b/2 | | .8-4x=12 | | 3z+9z2+5z+6 =z−8z−12 | | F=7/2(n-5) | | -3(6x-4)=-18x-12 | | x-5/6+x+3/7=11/7 | | 3c−5=-2 | | 11+-5z=71 | | -3.4+9.8=-1.46(n-7.7)+2.05 | | 2(b+78)=14 | | t/2+10=14 | | 6f−6=9f | | -7(3x-3)=-21x-21 | | 12(2a+11)=12(2a+12) | | 4=10−2s | | 0.008=————x10 | | 10x/21-x/3=1 | | 2e+4(e-1)=5(e-1) | | 7y+5-11+3y-3y-5=3 | | 5-x=8x-8(3x+5) | | t=1100/50 | | 20g+-24=1-g | | 2=3g−4 | | -5x+-7x+2=-14 | | x+1/18=1/9+x-2/8 | | 2.19m+5=49.10 |